Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Collecting environmental DNA (eDNA) as a nonlethal sampling approach has been valuable in detecting the presence/absence of many imperiled taxa; however, its application to indicate species abundance poses many challenges. A deeper understanding of eDNA dynamics in aquatic systems is required to better interpret the substantial variability often associated with eDNA samples. Our sampling design took advantage of natural variation in juvenile Atlantic salmon (Salmo salar) distribution and abundance along 9 km of a single river in the Province of New Brunswick (Canada), covering different spatial and temporal scales to address the unknown seasonal impacts of environmental variables on the quantitative relationship between eDNA concentration and species abundance. First, we asked whether accounting for environmental variables strengthened the relationship between eDNA and salmon abundance by sampling eDNA during their spring seaward migration. Second, we asked how environmental variables affected eDNA dynamics during the summer as the parr abundance remained relatively constant. Spring eDNA samples were collected over a 6‐week period (12 times) near a rotary screw trap that captured approximately 18.6% of migrating smolts, whereas summer sampling occurred (i) at three distinct salmon habitats (9 times) and (ii) along the full 9 km (3 times). We modeled eDNA concentration as a product of fish abundance and environmental variables, demonstrating that (1) with inclusion of abundance and environmental covariates, eDNA was highly correlated with spring smolt abundance and (2) the relationships among environmental covariates and eDNA were affected by seasonal variation with relatively constant parr abundance in summer. Our findings underscore that with appropriate study design that accounts for seasonal environmental variation and life history phenology, eDNA salmon population assessments may have the potential to evaluate abundance fluctuations in spring and summer.more » « less
-
Growth–survival tradeoffs may be a generalizable mechanism influencing trajectories of prey evolution. Here, we investigate evolutionary contributions to growth and survival in western mosquitofish ( Gambusia affinis ) from 10 populations from high- and low-predation ancestral environments. We assess (i) the degree to which evolutionary components of growth and survival are consistent or inconsistent across populations within ancestral predation environments, and (ii) whether growth and survival trade off at the population level. We measure growth and survival on groups of common-reared mosquitofish in pond mesocosms. We find that evolution of growth is consistent, with fish from low-predation ancestral environments showing higher growth, while the evolution of survival is inconsistent, with significant population-level divergence unrelated to ancestral predation environment. Such inconsistency prevents a growth–survival tradeoff across populations. Thus, the generalizability of contemporary evolution probably depends on local context of evolutionary tradeoffs, and a continued focus on singular selective agents (e.g. predators) without such local context will impede insights into generalizable evolutionary patterns.more » « less
-
Abstract Humans are dominant global drivers of ecological and evolutionary change, rearranging ecosystems and natural selection. In the present article, we show increasing evidence that human activity also plays a disproportionate role in shaping the eco-evolutionary potential of systems—the likelihood of ecological change generating evolutionary change and vice versa. We suggest that the net outcome of human influences on trait change, ecology, and the feedback loops that link them will often (but not always) be to increase eco-evolutionary potential, with important consequences for stability and resilience of populations, communities, and ecosystems. We also integrate existing ecological and evolutionary metrics to predict and manage the eco-evolutionary dynamics of human-affected systems. To support this framework, we use a simple eco–evo feedback model to show that factors affecting eco-evolutionary potential are major determinants of eco-evolutionary dynamics. Our framework suggests that proper management of anthropogenic effects requires a science of human effects on eco-evolutionary potential.more » « less
-
The integration of environmental DNA (eDNA) within management strategies for lotic organisms requires translating eDNA detection and quantification data into inferences of the locations and abundances of target species. Understanding how eDNA is distributed in space and time within the complex environments of rivers and streams is a major factor in achieving this translation. Here we study bidimensional eDNA signals in streams to predict the position and abundance of Atlantic salmon ( Salmo salar ) juveniles. We use data from sentinel cages with a range of abundances (3–63 juveniles) that were deployed in three coastal streams in New Brunswick, Canada. We evaluate the spatial patterns of eDNA dispersal and determine the effect of discharge on the dilution rate of eDNA. Our results show that eDNA exhibits predictable plume dynamics downstream from sources, with eDNA being initially concentrated and transported in the midstream, but eventually accumulating in stream margins with time and distance. From these findings we developed a fish detection and distribution prediction model based on the eDNA ratio in midstream versus bankside sites for a variety of fish distribution scenarios. Finally, we advise that sampling midstream at every 400 m is sufficient to detect a single fish at low velocity, but sampling efforts need to be increased at higher water velocity (every 100 m in the systems surveyed in this study). Studying salmon eDNA spatio-temporal patterns in lotic environments is essential to developing strong quantitative population assessment models that successfully leverage eDNA as a tool to protect salmon populations.more » « less
-
Abstract Wild populations must continuously respond to environmental changes or they risk extinction. Those responses can be measured as phenotypic rates of change, which can allow us to predict contemporary adaptive responses, some of which are evolutionary. About two decades ago, a database of phenotypic rates of change in wild populations was compiled. Since then, researchers have used (and expanded) this database to examine phenotypic responses to specific types of human disturbance. Here, we update the database by adding 5675 new estimates of phenotypic change. Using this newer version of the data base, now containing 7338 estimates of phenotypic change, we revisit the conclusions of four published articles. We then synthesize the expanded database to compare rates of change across different types of human disturbance. Analyses of this expanded database suggest that: (i) a small absolute difference in rates of change exists between human disturbed and natural populations, (ii) harvesting by humans results in higher rates of change than other types of disturbance, (iii) introduced populations have increased rates of change, and (iv) body size does not increase through time. Thus, findings from earlier analyses have largely held‐up in analyses of our new database that encompass a much larger breadth of species, traits, and human disturbances. Lastly, we use new analyses to explore how various types of human disturbances affect rates of phenotypic change, and we call for this database to serve as a steppingstone for further analyses to understand patterns of contemporary phenotypic change.more » « less
An official website of the United States government
